Stochastic Oscillator

The Stochastic Oscillator is a momentum indicator that compares a particular closing price of an asset to a range of its prices over a certain period of time. The sensitivity of the oscillator to market movements can be reduced by adjusting the time period or by taking a moving average of the result.

The Stochastic Oscillator (%K) is often used with the Slow Stochastic (%D), the 3-day moving average of the Stochastic Oscillator.

What It Measures

The Stochastic Oscillator measures the level of the close relative to the high-low range over a given period of time. It is based on the observation that in an uptrend, prices tend to close near the high, and in a downtrend, prices tend to close near the low.

When to Use

Interpretation

Default Usage

use rust_ti::momentum_indicators::bulk::stochastic_oscillator;

pub fn main() {
    // fetch the data in your preferred way
    // let close = vec![...];  // closing prices
    
    let stochastics = stochastic_oscillator(&close, 14);
    println!("{:?}", stochastics);
}
import pytechnicalindicators as pti

# fetch the data in your preferred way
# close = [...]  # closing prices

stochastic = pti.momentum_indicators.bulk.stochastic_oscillator(close, period=14)
print(stochastic)
// WASM import
import init, { momentum_bulk_stochasticOscillator } from 'https://cdn.jsdelivr.net/npm/ti-engine@latest/dist/web/ti_engine.js';

await init();

// fetch the data in your preferred way
// const close = [...];  // closing prices

const stochasticSeries = momentum_bulk_stochasticOscillator(close, 14);
console.log(stochasticSeries);

Optimization

The best way to determine what the best parameters for your indicator are is to build a simple optimization loop that tests all possible parameter combinations between a defined min and max value, and rate the output.

Below is an example of how to do this in Rust.

use rust_ti::momentum_indicators::bulk::stochastic_oscillator;
use rust_ti::chart_trends::{peaks, valleys};

fn proximity_rating(fuzzed_location: &usize, price_location: &usize) -> f64 {
    1.0 / (*fuzzed_location as f64 - *price_location as f64).abs()
}

pub fn main() {

    // fetch the data in your preferred way
    // let close = vec![...];  // closing prices

    // get buy and sell points, in an ideal world we would buy at the lowest point in the dip and sell at the highest point in the peak
    // In the course of a 20-day period (1 month of trading days), we want to find the highest peak and lowest valley within 5 days of each other
    let sell_points = peaks(&close, 20, 5).into_iter().map(|(_, i)| i).collect::<Vec<usize>>();
    let buy_points = valleys(&close, 20, 5).into_iter().map(|(_, i)| i).collect::<Vec<usize>>();

    // Define the ranges for optimization
    let max_period = 20;
    let min_period = 3;
    let min_oversold = 10;
    let max_oversold = 40;
    let min_overbought = 60;
    let max_overbought = 90;

    let fuzz_parameter = 5; // Allowable distance from buy/sell points

    // Store the best parameters found
    let mut best_rating = 0.0;
    let mut best_period = 0;
    let mut best_oversold = 0;
    let mut best_overbought = 0;
    let mut best_stochastics = vec![];

    for oversold in min_oversold..=max_oversold {
        for overbought in min_overbought..=max_overbought {
            for period in min_period..=max_period {
                let indicators = stochastic_oscillator(&close, period);
                let mut rating = vec![];
                let mut matched_sell = vec![];
                let mut matched_buy = vec![];
                for i in 0..indicators.len() {
                    let price_location = i + period;
                    if indicators[i] > overbought as f64 {
                        if sell_points.contains(&price_location) {
                            // If sell point == stochastic, rate positively
                            rating.push(1.0);
                            matched_sell.push(price_location);
                        } else if buy_points.contains(&price_location) {
                            // If buy point == stochastic, rate negatively
                            rating.push(-1.0);
                        } else {
                            let mut found_sell = false;
                            for fuzzed_location in (price_location - fuzz_parameter)..=(price_location + fuzz_parameter) {
                                // It's ok if we count multiple times for fuzzed locations as we reduce the rating
                                // based off of distance from the actual sell point which will impact the final rating
                                if sell_points.contains(&fuzzed_location) {
                                    rating.push(proximity_rating(&fuzzed_location, &price_location));
                                    matched_sell.push(fuzzed_location);
                                    found_sell = true;
                                }
                                if buy_points.contains(&fuzzed_location) {
                                    // Note the `-` here to penalize for selling instead of buying
                                    if !matched_sell.contains(&fuzzed_location) {
                                        rating.push(-proximity_rating(&fuzzed_location, &price_location));
                                    }
                                }
                            }
                            if !found_sell {
                                rating.push(0.0);
                            }
                        }
                    } else if indicators[i] < oversold as f64 {
                        if buy_points.contains(&price_location) {
                            // If buy point == stochastic, rate positively
                            rating.push(1.0);
                            matched_buy.push(price_location);
                        } else if sell_points.contains(&price_location) {
                            rating.push(-1.0);
                        } else {
                            let mut found_buy = false;
                            for fuzzed_location in (price_location - fuzz_parameter)..=(price_location + fuzz_parameter) {
                                // It's ok if we count multiple times for fuzzed locations as we reduce the rating
                                // based off of distance from the actual sell point which will impact the final rating
                                if buy_points.contains(&fuzzed_location) {
                                    rating.push(proximity_rating(&fuzzed_location, &price_location));
                                    matched_buy.push(fuzzed_location);
                                    found_buy = true;
                                }
                                if sell_points.contains(&fuzzed_location) {
                                    // Note the `-` here to penalize for buying instead of selling
                                    if !matched_buy.contains(&fuzzed_location) {
                                        rating.push(-proximity_rating(&fuzzed_location, &price_location));
                                    }
                                }
                            }
                            if !found_buy {
                                rating.push(0.0);
                            }
                        }
                    }
                }
                // Look for any missed buy/sell points and penalize
                for missed_sell in sell_points.iter() {
                    if !matched_sell.contains(missed_sell) {
                        rating.push(-1.0);
                    }
                }
                for missed_buy in buy_points.iter() {
                    if !matched_buy.contains(missed_buy) {
                        rating.push(-1.0);
                    }
                }
                let total_rating: f64 = rating.iter().sum::<f64>() / (rating.len() as f64);
                if total_rating > best_rating {
                    best_rating = total_rating;
                    best_period = period;
                    best_oversold = oversold;
                    best_overbought = overbought;
                    best_stochastics = indicators.clone();
                }
            }
        }
    }

    println!("Best Stochastic parameters found:");
    println!("Period: {}", best_period);
    println!("Oversold threshold: {}", best_oversold);
    println!("Overbought threshold: {}", best_overbought);
    println!("Rating: {}", best_rating);
    println!("Best Stochastic values: {:?}", best_stochastics);

}

Optimization Output

Below is an example output from the optimization code above run on a year of S&P data.

Best Stochastic parameters found:
Period: 13
Oversold threshold: 35
Overbought threshold: 95
Rating: 0.2845
Best Stochastic values: [45.23, 78.12, 65.43, ...]

Interactive Chart

To better illustrate how the indicator performs with different parameters, an interactive chart is provided below comparing default parameters (blue) with optimized parameters (green).

Analysis

The optimized Stochastic Oscillator parameters generate slightly more trading signals compared to the default settings. A trading simulation was conducted to evaluate the effectiveness of both parameter sets. Both strategies started with an initial capital of $1000 and invested 20% of the remaining capital on each trade.

Long positions were opened when the Stochastic fell below the oversold level and closed when it rose above the overbought level. Short positions were opened when the Stochastic rose above the overbought level and closed when it fell below the oversold level.

The results are shown in the tables below. The optimized Stochastic strategy yielded a profit of $11.87, with a $193.68 open position. This outperformed the default Stochastic strategy which resulted in a profit of $7.38 (with a $177.14 open position).

Optimized trading simulation

Initial Investment
$1000.00
Final Capital
$1011.87
Total P&L
$11.87
Open Position
  • SideLONG
  • Shares0.0343
  • Entry$5955.25
  • Value$193.68

Default trading simulation

Initial Investment
$1000.00
Final Capital
$1007.38
Total P&L
$7.38
Open Position
  • SideLONG
  • Shares0.0342
  • Entry$5955.25
  • Value$192.82

Trading simulation code

For those you want to run their own simulation to compare results

fn simulate_trading(best_indicator: &[f64], best_period: usize, close: &[f64], best_oversold: usize, best_overbought: usize) {
    // --- TRADING SIMULATION CODE ---

    println!("
--- Trading Simulation ---");

    let initial_capital = 1000.0;
    let mut capital = initial_capital;
    let investment_pct = 0.20;

    struct Position {
        entry_price: f64,
        shares: f64,
    }

    let mut open_long: Option<Position> = None;
    let mut open_short: Option<Position> = None;

    // Print table header
    println!("{:<5} | {:<19} | {:<10} | {:<10} | {:<12} | {:<15} | {:<10}",
             "Day", "Event", "Stochastic", "Price", "Shares", "Capital", "P/L");
    println!("{}", "-".repeat(95));


    for i in 0..best_indicator.len() {
        let price_index = i + best_period;
        if price_index >= close.len() { break; }

        let stoch_val = best_indicator[i];
        let current_price = close[price_index];
        let day = price_index;

        // --- Handle Long Position ---
        if let Some(long_pos) = open_long.take() {
            if stoch_val > best_overbought as f64 {
                let sale_value = long_pos.shares * current_price;
                let profit = sale_value - (long_pos.shares * long_pos.entry_price);
                capital += sale_value;
                println!("{:<5} | {:<19} | {:<10.2} | ${:<9.2} | {:<12.4} | ${:<14.2} | ${:<9.2}",
                         day, "Sell (Close Long)", stoch_val, current_price, long_pos.shares, capital, profit);
            } else {
                open_long = Some(long_pos); // Put it back if not selling
            }
        } else if stoch_val < best_oversold as f64 && open_short.is_none() { // Don't buy if short is open
            let investment = capital * investment_pct;
            let shares_bought = investment / current_price;
            open_long = Some(Position { entry_price: current_price, shares: shares_bought });
            capital -= investment;
            println!("{:<5} | {:<19} | {:<10.2} | ${:<9.2} | {:<12.4} | ${:<14.2} | {}",
                     day, "Buy (Open Long)", stoch_val, current_price, shares_bought, capital, "-");
        }

        // --- Handle Short Position ---
        if let Some(short_pos) = open_short.take() {
            if stoch_val < best_oversold as f64 {
                let cost_to_cover = short_pos.shares * current_price;
                let profit = (short_pos.shares * short_pos.entry_price) - cost_to_cover;
                capital += profit; // Add profit to capital
                println!("{:<5} | {:<19} | {:<10.2} | ${:<9.2} | {:<12.4} | ${:<14.2} | ${:<9.2}",
                         day, "Cover (Close Short)", stoch_val, current_price, short_pos.shares, capital, profit);
            } else {
                open_short = Some(short_pos); // Put it back if not covering
            }
        } else if stoch_val > best_overbought as f64 && open_long.is_none() { // Don't short if long is open
            let short_value = capital * investment_pct;
            let shares_shorted = short_value / current_price;
            open_short = Some(Position { entry_price: current_price, shares: shares_shorted });
            // Capital doesn't change when opening a short, it's held as collateral
            println!("{:<5} | {:<19} | {:<10.2} | ${:<9.2} | {:<12.4} | ${:<14.2} | {}",
                     day, "Short (Open Short)", stoch_val, current_price, shares_shorted, capital, "-");
        }
    }

    println!("
--- Final Results ---");
    if let Some(pos) = open_long {
        println!("Simulation ended with an OPEN LONG position:");
        println!("  - Shares: {:.4}", pos.shares);
        println!("  - Entry Price: ${:.2}", pos.entry_price);
        let last_price = close.last().unwrap_or(&0.0);
        let current_value = pos.shares * last_price;
        capital += current_value;
        println!("  - Position value at last price (${:.2}): ${:.2}", last_price, current_value);
    }
    if let Some(pos) = open_short {
        println!("Simulation ended with an OPEN SHORT position:");
        println!("  - Shares: {:.4}", pos.shares);
        println!("  - Entry Price: ${:.2}", pos.entry_price);
        let last_price = close.last().unwrap_or(&0.0);
        let cost_to_cover = pos.shares * last_price;
        let pnl = (pos.shares * pos.entry_price) - cost_to_cover;
        capital += pnl;
        println!("  - Unrealized P/L at last price (${:.2}): ${:.2}", last_price, pnl);
    }

    let final_pnl = capital - initial_capital;
    println!("
Initial Capital: ${:.2}", initial_capital);
    println!("Final Capital:   ${:.2}", capital);
    println!("Total P/L:       ${:.2}", final_pnl);

}

fn main() {
    // Fetch data and perform optimization as shown in the optimization code above
    simulate_trading(&best_stochastics, best_period, &close, best_oversold, best_overbought);
    
    // Compare with default parameters
    let default_stochastics = stochastic_oscillator(&close, 14);
    simulate_trading(&default_stochastics, 14, &close, 20, 80);
}